Uni-Logo
Sections
You are here: Home News Surface-attached hydrogels for microarray based immunoassays
Document Actions

Surface-attached hydrogels for microarray based immunoassays

A promising pathway to improve on the sensitivity of protein microarrays is to immobilize the capture antibodies in a three dimensional hydrogel matrix. We describe a simple method based on printing of an aqueous protein solution containing a photosensitive polymer and the capture antibody onto a plastic chip surface.

During short UV-exposure photocrosslinking occurs, which leads to formation of a hydrogel, which is simultaneously bound to the substrate surface. In the same reaction the antibody becomes covalently attached to the forming hydrogel. As the capture antibodies are immobilized in the three-dimensional hydrogel microstructures, high fluorescence intensities can be obtained. The chip system is designed such, that non-specific protein adsorption is strongly prevented. Thus, the background fluorescence is strongly reduced and very high signal-to-background ratios are obtained (SBR > 6 for cBSA = 1 pM; SBR > 100 for cBSA > 100 pM). The kinetics of antigen binding to the arrayed antibodies can be used to determine the concentration of a specific protein (for example the tumor marker β2-microglobulin) in solution for a broad range of analyte concentrations. By varying size and composition of the protein-filled hydrogel microstructures as well as adjusting the extent of labeling it is possible to easily adapt the surface concentration of the probe molecules such that the fluorescence signal intensity is tuned to the prevalence of the protein in the analyte. As a consequence, the signal tuning allows to analyze solutions, which contain both proteins with high (here: upper mg mL−1 range) and with very low concentrations (here: lower μg mL−1 range). This way quantitative analysis with an exceptionally large dynamic range can be performed.

DOI: 10.1016/j.aca.2013.04.013

Personal tools